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Results of measurements of the temperature dependence of the shear viscosity
and the mutual diffusion coeflicient of a 2-butoxyethanol/water mixture of criti-
cal composition are reported. The shear viscosities are measured with a capillary
viscometer, and the diffusion coefficients by dynamic light scattering. The
viscosity data are used to determine the regular (background) and the singular
(critical) part of the viscosity [ny; 7 =nu(Q0¢)™] and to analyze the crossover
regime. Q, has a value of Qy=(1.54 +0.60) x 10° cm ~!, which is small for a
binary mixture of components of small molar mass. The viscosity is dominated
by singular contributions in a narrow temperature range (T, — T)< 1.2 K. The
singular contributions can be neglected for temperatures (T.— 7) 211 K. The
function n = n,, exp{z, H}, given in the literature, represents the viscosity data in
the temperature range 3 mK < (7, — T) <25 K using the asymptotic form of the
function H for (g4/9.)—0 (q4.¢.. parameter of the theory). This limit
corresponds to the case in which the background diffusion coefficient Dy, can
be neglected. The reduced diffusion coefficient D* calculated from the light-
scattering data as a function of the scaling variable x (= ¢¢) is represented by
the approximation of the dynamic scaling function proposed in the literature.

KEY WORDS: critical phenomena; shear viscosity; diffusivity; dynamic
scaling.

1. INTRODUCTION

Approaching the critical point of a binary liquid mixture of critical com-
position from the homogeneous one-fluid phase region of the phase
diagram, it is observed that the shear viscosity exhibits a weak divergence
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and the mutual diffusion coefficient a strong convergence (“critical slowing
down”) [1-4]. In the treatment of dynamic critical phenomena [5-7], it is
customary to separate the mutual diffusion coeflicient and the viscosity into
a regular background part and a singular critical part. The principle
of dynamic scaling implies that the critical diffusion coefficient D should
depend on the scaled variable x [ =¢¢; &, correlation length of local
concentration fluctuations; ¢, absolute value of the scattering vector,
q=(4n/A)sin(O/2); A, wavelength of incident light in the scattering
medium; 6O, scattering angle]. Burstyn et al. [9] have given an approxi-
mant for the dynamic scaling function of the form:

D .= rc/q2= RlkgT/(6mn&)] Qx(x)[1+ (x/2)2]:"/2 (1)

with
Qx(x) = [3/(4x*)][1 + 7 + (x* ~ 1/x) arctan(x)] (2)
n=nu(Qol)™ 3)

I is the reciprocal of the time constant of the autocorrelation function of
scattered intensity [assuming that the diffusion coefficient D (=D_+ D,) is
measured by dynamic light-scattering experiments]; I"., the singular con-
tribution to I'; I',, the background contribution to I'; R, the amplitude of
the correction to the Stokes—Einstein diffusion law (universal constant
R=1.03 [2]); kg, the Boltzmann constant; &, the correlation length of
local concentration fluctuations (¢=¢&q¢~"; t=|T—-T./T.; v, universal
critical exponent, theoretical value v=0.630); Q(x), the Kawasaki func-
tion; z,, the universal critical exponent, theoretical value z, = 0.065; 7, the
shear viscosity (n,, background contribution); and Q,, the system-specific
critical amplitude of viscosity.

There are several theoretically calculated values of z, in the literature
(0.050<z,<0.065). A review of experimentally determined values of z,
has shown that a large number of experimental data are consistent with
the theoretical value of z,=0.065 [3,4]. Equation (3) represents the
asymptotic behavior of the viscosity near the critical temperature. Far
away from T, the viscosity should approach the background viscosity #,.
According to Bhattacharjee et al. [8, 9], the crossover behavior of the
viscosity can be represented by Eq. (4):

n=nyexp{z, H} (4)

The function H, which is given by Eq. (2.18) in Ref. 8, is a function of the
correlation length ¢ and two system-specific parameters, ¢, and ¢4. They
are related to the critical amplitude @, by Eq. (5):

o ' =[(1/2)exp{4/3}1[q. ' +q5'] (5)
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The parameter g. appears in the expression of the background diffusion
coefficient Dy [9] [see Eq. (6)].

Dy=Ty/q*=[kgT/(161,8)I[(1 +¢7°E?)/(g¢)] (6)

Analysis of the experimental dynamic light-scattering data in terms of these
concepts requires knowledge of the value of the system-specific parameters
Qo and (q4/q.), which can be obtained from viscosity measurements [10].

It is the aim of this study to determine the values of Q, and (g4/q9.)
for a 2-butoxyethanol/water mixture of critical composition and to
use this information to deduce the reduced diffusion coefficient D*
[=(6an&)/ (kg T)(D— D,)] from experimental data obtained from dynamic
light-scattering experiments for the same system. It is expected that D* is a
universal function of the scaling variable x (= g¢¢). The experimental data
should collapse on a single curve given by Q(x) = RQy (x)[1 + (x/2)*]>.
A similar study has been carried out by Burstyn et al. [9] for the system
nitroethane/3-methylpentane.

The system 2-butoxyethanol (2-C,E,)/water has a closed-loop mis-
cibility gap. The experiments are carried out in the vicinity of the lower
critical point. It is known that in a mixture of critical composition of these
components, there exist aggregates of 2-C,E, molecules, reflecting the fact
that 2-C,E, is the first member of a homologous series of nonionic tensides
of the type C,E;.

For the data analysis the value of the system-specific critical amplitude
&, of the correlation length of local concentration fluctuations of this
system determined by static light-scattering experiments has to be known.
For the system 2-C,E,/water the critical amplitude &, has a value of
£o=044nm [11]. Combining it with the critical amplitude o, of the
liquid/liquid interfacial tensions and the critical amplitude 4, of the heat
capacity of this system, respectively, leads to values of the universal
amplitude ratios R, ; and R, 5, which are consistent with the theoretically
predicted universal values [12, 13]. This finding is taken as evidence for
the absence of systematic errors in the value of &,. To check the reliability
of the value of &, of the system 2-C,E,/water, it was determined again in
a new series of static light-scattering experiments (sec Section 3.3). The
experiments confirm the value of &, given above within the uncertainty of
the measurements.

2. METHOD OF DETERMINATION OF THE
PARAMETER @,

To obtain the value of Q, from viscosity data it is necessary to
separate the experimentally determined shear viscosity of a mixture of
critical composition into its regular and singular part.
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2.1. Determination of the Regular Part of Viscosity

Two sets of viscosity measurements are carried out using an
Ubbelohde capillary viscometer: set 1, experiments with 10 2-C,E,/H,O
mixtures of noncritical composition y < y. and y <y, (y, mass fraction
of 2-C,E,), T<Tp (T, temperature of phase separation); and set 2,
experiments with a 2-C,E,/H,O mixture of critical composition.

2.1.1. Viscosity of 2-C,E,/H.O Mixwres of Different Compositions at
Different Temperatures over a Wide Range of Temperatures and
Compositions

The experimental data are used to calculate (a) the viscosity of the
mixtures at a chosen set of identical temperatures using Eq.(7) (Vogel
equation [14]; see Table Il and Fig. 2b) and (b) the background viscosity
nu{y.) of the mixture of critical composition at these temperatures by
interpolation (interpolation of viscosity versus composition data at fixed
temperatures to construct the viscosity of critical composition at these
temperatures). The interpolations are carried out using the method of
cubic spline approximation [15]. A fit of Eq. (7) to the interpolated (con-
structed) n,().) data (three-parameter fit) gives values of the parameters
Acsps B.sp, and C_, (sp, spline approximation; index c refers to the
critical mixture). With these values the temperature dependence of #,
(y., constructed) of a 2-C,E,/H,O mixture of critical composition is
described (see Fig. 2a):

(ms/n*)=Aexp{B/[(T/T*)-C]} (7

N, is the background viscosity of the mixture of critical composition; A4, B,
and C are constants; T*=1K;and y* =1lg-cm~'.s~!' (=1P)

Equation (7) is an empirical equation which has been used successfully
to represent the temperature dependence of the viscosity of fluids in which
hydrogen bonds act between the molecules.

2.1.2. Viscosity of a 2-C,E,/H,O Mixture of Critical Composition over a
Wide Range of Temperatures Close to and Away from the Critical
Temperature

Equation (7) is fitted to the experimental data (three-parameter fit
with 4., B., and C. as free parameters; index ¢ refers to the critical
mixture) at temperatures “sufficiently” far away from the critical tem-
perature so that critical contributions can be neglected. To find this tem-
perature range (see Fig. 1), only viscosity data obtained at temperatures
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Fig. 1. Separation of regular (background) contribution from singular
(critical) contributions of the shear viscosity # of a 2-C,E,/water mixture of
critical composition (¥, =0.2945; y, mass (raction) in the vicinity of a lower
critical point (schematically). Temperature range in which the viscosity data
are not influenced by critical contributions, T, = T,= T} crossover region,
T = T critical region, T# = T,=T_. T. temperature. For details see text.
nt=1g-em s (=1P)

between T, and T, are used for the fit. The temperature difference
(T,— T,) is increased step by step (keeping T, constant and increasing T,).
The standard deviation s of each fit is used as a criterion of the quality
of the fit. It is expected that a plot of s versus T, exhibits a “plateau”
region away from the critical temperature extending up to a certain value
T,=T#* It is assumed that the temperature range (7—T),) of the
“plateau” region of s represents the temperature range in which the
viscosity of the critical mixtures is not influenced by critical contributions.
It is expected that the values of the viscosity calculated from values of the
parameter A, ., B, ., and C,,. (obtained by the spline approximation
procedure) are consistent with the values of the viscosity calculated from
the values of the parameter 4., B, and C. [obtained from viscosity data
of a mixture of critical composition in the temperature range (7> —T,)].
It is assumed that the viscosity values calculated on the basis of Eq.(7)
with the values of the parameters A. (Aspc)s Be (Bgp.c)h and C.(Cyp)
represent the background viscosity of the mixture of critical composition
away from the critical temperature as well as close to it.
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2.2. Determination of the Singular Part

The determination of the singular part of the shear viscosity of a
mixture of critical composition is based on Eq. (8), which is obtained by
combining Egs. (3), (7), and (10):

(mm*)=M'm*ye= (8)

with
(n'/n*)=A;exp{B//[(T/T*) - C.]}
and
Ac=AQoCo)™" 9)
=Gt ™" (10)

v is the universal critical exponent, theoretical value v=0.630; r, the
reduced temperature difference, 1 = (T, — T)/T.; n, the shear viscosity; and
n*=1g-cm~'.s7' (=1P).

Equation (8) is fitted to the experimental data obtained with a
mixture of critical composition (three-parameter fit, z,, T, and A_; fixed
parameter, v=10.630). The values of the constants B, and C, are fixed at
values obtained by the procedure described above assuming that they are
not influenced by critical contributions. The fitting procedure is started
with viscosity data taken from the temperature range (7. — T,) (see Fig. 1)
close to T.. The temperature difference (T, — T,) is increased step by step
(keeping T, constant and decreasing 7,). The standard deviation s of the
fit 1s taken as a criterion of the quality of the fit. It is assumed that the
temperature range (7. — T} leading to the “plateau” region of a s versus
(T.— T,) plot characterizes the “critical region.” Since the value of A_ is
known from the analysis of viscosity data of a mixture of critical composi-
tion taken at temperatures away from the critical temperature, the value of
the system-specific critical amplitude of viscosity Q, can be calculated from
Eq. (9). The value of &, of the system is known from static light-scattering
experiments.

3. EXPERIMENTS

3.1. Materials

2-Butoxyethanol (2-C, E,) obtained from Merck (Darmstadt, Germany)
was of synthetic quality (gas chromatographic purity >99%). It was
purified by fractional distillation in a concentric-tube column of 75
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theoretical plates at a reduced pressure of 33 mbar (boiling temperature at
this pressure, T, =78°C). The main cut had a volume of 10> cm?® and was
stored under N, gas at T= —5°C. Gas chromatographic analysis gave a
purity of 99.99%. Water was double-distilled in a quartz distiller. Oxygen
gas was removed from the water by treatment with argon gas.

3.2. Critical Data

The critical composition at the lower critical point determined on
the basis of the equal volume criterion of liquid phases coexisting at
temperatures above the critical (lim I'=T_ (V’/V")=1) had a value
v.=0.2945 (mass fraction of 2-C,E,, corresponding to a mole fraction of
x.=0.0598). The visually determined temperature of phase separation of a
mixture with this composition had a value T.(visual)=49.365°C. This
value of T,.(visual) refers to the critical mixture used for the viscosity
measurements.

3.3. Static Light-Scattering Experiments

Measurements of the angular dependence of light intensity scattered
by a 2-C,E,/water mixture of critical composition were performed as func-
tion of the absolute value of the scattering vector ¢ and the temperature
difference (T.— T') [11]. The data were analyzed in terms of the Ornstein—
Zernike correlation scaling function (g¢ < 4). Data points near the critical
temperature, which are influenced by double and multiple scattering, are
excluded from the analysis [ie., (T (visual)— T) <250 mK]. The scatter-
ing strength 4., [16] has a value of about A, ,x~1x10"*m~"' This
value of A, is deduced from measurements of turbidity of the mixture.
The analysis of the ¢(T,— T') data in terms of Eq. (10) (two-parameter fit:
¢o and T, with v=0.630) gives the following result: ;=042 nm, and
T.(fit) =49.189°C (see Fig. 9). The value of &, is consistent with that given
in Ref. 11.

3.4. Viscometry

The construction of the viscometer used in this study was similar to
that described in Ref. 17 (length of capillary, L =9.8 cm; radius of capillary,
r=0.02286 cm; volume flowing through the capillary, ¥'=3.7 cm?; (4h),
mean value of the height of the fluid miniscus during an experiment,
{4h)=11.55cm). It was calibrated in the temperature range 25°C <
T<60°C with water [18] (n/p=at—b/t; a=3.667x10"°cm*s 3
b=1.127x10""'cm?; p, density; «, time). The efflux time t; varied in the



74 Zielesny et al.

range of 400s <1,y <900s (of.s=0.5s). The viscometer, which could be
rotated by 360° and positioned reproducible in the vertical position, was
immersed in a carefully insulated thermostat with a volume of 150 dm?
(long-time temperature stability 67=1mK). It was filled with filtered
mixtures of 2-C,E,/H,O (Teflon filter, No. 11807-13; nominal pore size,
0.2 um; Sartorius, Gottingen, Germany) in a glove box with a nitrogen
atmosphere and flame-sealed thereafter. The compositions had the
following values: y, =0: v, =0.0400; »;=0.0800; v, =0.1000; y;=0.1900;
1e=0.3511; y,=0.4700;: yy=0.600; »,=0.7300; and y,,=1 (», mass
fraction of 2-C,E,).

The density of the mixtures was measured as a function of temperature
using a vibrating-tube densitometer from Paar, Graz, Austria (Type DMA
601). It was calibrated with water [18] and cyclohexane [19]. The tem-
perature dependence of the density of the 2-C,E,/H,O mixtures could be
represented by a function of the form p=a+bT+cT?+dT">. The con-
stants a, b, ¢, and d had values given in Table 1. The data for the mixture
of critical composition are not accurate enough to look for the weak
divergence of the density approaching the critical temperature. [The
number of significant figures given for the parameters in Tables I and 11
and in the text are necessary to reproduce the experimental data within the
uncertainty of the data.]

3.5. Dynamic Light-Scattering Experiments
The light-scattering photometer (light source, Arion laser; Spectra

Physics, Model 162A, 15 mW at i,=488 nm) used for the dynamic light-

Table 1. Density p of 2-C,E,/H.O Mixtures of Different Compositions
(», Mass Fraction of 2-C,E,) as a Function of Temperature (p/p* =a+bhT +
¢T*+dT* a, b, c. and d, Constants; p* =1gem ™% T in “C)

Temp.
¥ a b ¢ d range (°C)
0.0400 0.99930 1.323x10"° —6926x10-° 2701 x 10°¢ 20-50
0.0800 0.99884 1.092x10-° —8217x10-° 3835x10°% 20-50
0.1000 1.00019 —1.133x10"* —6.442x10-°¢ 2750x10°* 20-54
0.1900 099722 —-3228x10-* —4.094 x 108 1.493 x 108 20-50.34
0.2945 099149 —5544x10"* 3.208x10-¢ —1.883x10°* 24.2-49.36
0.3511 098700 —5.525x10-* —1.291 x10-° —4.008 x 10°° 20-49.47
0.4700 0.98531 —-9.999 x 10~ 1.821 x10-¢ —1.587x 1078 25-53
0.6000 0.96625 —6.988x10* —8926x 107 —1.728x10°° 20-54
0.7300 095304 —7.135x10"* —1.578 x 10-¢ 5330x10~° 20-50

1.0000 091482 —6.796x 10" —3610x10-¢ 2394 x 108 20-58
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scattering experiments and the methods of data acquisition and data
evaluation have been described in detail before [20, 21]. The normalized
clipped second-order correlation function g, '*(¢) of the light intensity
scattered by a mixture of critical composition at certain scattering angles
was measured as a function of temperature {0.005 K < [T (visual)—T] <
20K} and scattering angle (30°<6<135%) using a Malvern Correlator
K 7023. From g,'*'(1) the first-order normalized electric field autocorrela-
tion function g'''(r)=Y A, exp{~1I(¢q, T)t} was calculated (z, time). The
reciprocal of the “linewidth™ I'(q, T') is the relaxation time of the electric
field autocorrelation function. Provencher’s program DISCRETE [22] was
used for the analysis allowing for three exponential functions (i=1, 2, 3:
“one-, two-, three-component solution™). It turned out that the one-
component solution gave the best fit.

4. RESULTS AND DISCUSSION

4.1, Viscosity Data

The curves shown in Figs. 2a and b demonstrate the temperature and
composition dependence of the viscosity of the system 2-C,E,/H,O. In
Fig. 2b the data influenced by critical contributions are marked with filled
circles. The experimental data are compiled in Table II

4.1.1. Determination of the Regular Part (See Section 2.1.1)

The background viscosity of a mixture of critical composition at
different temperatures is extracted from the viscosity data of mixtures of
noncritical composition (ie., mixtures with compositions y, to y,o; see
Table I1) in three steps as follows.

(a) Equation (7) is fit to viscosity data of the mixtures with composi-
tions y, to y,o (see Table III). This is a three-parameter fit giving, for each
mixture, values of the constants 4, B, and C. The viscosity for each mixture
is calculated at 25 temperatures in the range 25°C < T<49°C.

(b) Viscosity data of a mixture of critical composition (y.=0.2945)
at these temperatures are constructed using the method of cubic spline
approximation (maximum allowed deviation between spline curve and con-
structed data points, about 0.7%). Two sets of spline approximations are
carried out: set I, using v, to v,,; and set II, using y, to y,, without y5 and
Ve (see Fig. 2a).

(c) Equation (7) is fit (three-parameter fit: A, ., By, . Csp ) to the
viscosity data constructed in this way (two sets of fits: data of setI and
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Fig. 2. Temperature and composition dependence of the viscosity n of the
system 2-C,E,/H,O in the vicinity of its lower critical point. y, mass fraction
of 2-CLE,: n* =1g-cm'.s™' (=1P). (a) Isotherms calculated from the
experimental data compiled in Table Il using Eq. (7) (see Table III). The open
squares refer to experimental data obtained with a mixture of critical composi-
tion (separate data set, not included in Table II}. In the upper part an overview
of the isobaric phase diagram of the system is given (data from Ref. 30). (b)
Temperature dependence of the viscosity of mixtures of different composition.
The filled circles mark viscosity data influenced by critical contributions. y, =0:
¥, =0.0400; y,=00800; y,=0.1000: y.=0.1900; »,=0.3511; »,=04700;
¥ =0.6000; 3y =0.7300; = 1.
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Table II. Shear Viscosity # of 2-C,E,/H,O Mixtures of Dillerent
Compositions at Different Temperatures [ v. Mass Fraction of 2-C,E,;
nt=1g-cm '-s ' (=1P)]

¥y =0 ¥, =0.0400 ¥, =0.0800 ¥y =0.1000

No. T(°C) yx10%* T(C) nx10%y* T(C) gx10¥%y* T(Cy nx10¥y*

1 20 1.002 20 1.1659 20 1.3914 20 1.5070
2 22 0.9548 21 1.1363 21 1.3523 22 1.4210
3 24 09111 22 1.1065 22 1.3150 24 1.3420
4 26 0.8705 23 1.0785 23 1.2790 26 1.2707
5 28 0.8327 24 1.0522 24 1.2446 28 1.2052
6 30 0.7975 25 1.0261 25 1.2116 30 1.1443
7 32 0.7647 26 1.0012 26 1.1802 32 1.0891
8 34 0.7340 27 0.9782 27 1.1499 34 1.0380
9 36 0.7052 28 0.9547 28 1.1206 36 0.9913
10 38 0.6783 29 09328 29 1.0924 38 0.9476
11 40 0.6529 30 09113 30 1.0660 40 0.9070
12 42 0.6291 31 0.8910 3t 1.0401 42 0.8696
13 44 0.6067 32 0.8711 32 1.0154 4 0.8346
14 46 0.5856 33 0.8521 33 0.9916 46 0.8021
15 48 0.5656 34 0.8342 34 0.9686 48 0.7716
16 50 0.5468 35 0.8158 35 0.9465 50 0.7430
17 36 0.7990 36 0.9251 52 0.7160
18 37 0.7823 37 0.9045 54 0.6913
19 38 0.7663 38 0.8847
20 39 0.7507 39 0.8657
21 40 0.7357 40 0.8474
22 41 0.7211 41 0.8294
23 42 0.7073 42 0.8121
24 43 0.6935 43 0.7957

25 44 0.6799 44 0.7795

26 45 0.6676 45 0.7640

27 46 0.6552 46 0.7487

28 47 0.6431 47 0.7347

29 48 0.6313 48 0.7202

30 49 0.6205 49 0.7065

3 50 0.6094 50 0.6934

“ Viscosity data taken from Ref. 18.
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Table I1. ( Continued)
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20 2.1017 20 3.4003 25 3.5759 20 4.7458
22 1.9786 2 3.1918 27 33654 22 4.4308
24 1.8680 24 3.0043 29 3.1836 24 4.1440
26 1.7665 26 28332 30 3.0923 26 3.8835
28 1.6754 28 2.6788 30.8 3.0227 28 3.6465
30 1.5916 30 2.5366 32 29227 30 34321
32 1.5151 32 2.4084 33 2.8424 32 32332
34 1.4452 34 22915 34 27731 34 3.0507
36 1.3809 36 2.1849 35 2.7041 36 2.8827
38 1.3217 38 2.0885 36 26374 38 2.7256
40 1.2681 40 2.0000 37 25723 40 2.5823
42 1.2183 42 1.9221 38 2.5056 42 2.4489
4 1.1725 44 1.8520 39 2.4469 44 23262
45 L1515 45 1.8222 40 2.3848 46 22116
46 1.1314 46 1.7952 41 23291 48 2.1055
47 1.1129 47 1.7732 42 22772 50 2.0066
475 1.1040 475 1.7658 43 2.2298
48 1.0961 48 1.7602 44 2.1828
48.5 1.0877 48.5 1.7609 455 21112
438.8 1.0833 488 1.7642 46 20836
49 1.0806 49 1.7705 47 2.0452
493 1.0763 49.1 1.7748 48 2.0020
49.5 1.0737 49.2 1.7833 49 1.9615
49.8 1.0702 49.3 1.7915 50 19213
50 1.0686 494 1.8039 51 1.8849
50.3 1.0663 49.45 1.8126 52 1.8557
50.34 1.0655 49.47 1.8172 53 1.8231

49.474 1.8181




Table 11. { Continued)

¥9=0.7300 Yo=1
No. T(°C) nx10%n* T(°C) nx10¥y*
1 20 48792 20 31872
2 2 4.5536 22 30154
3 24 42564 24 28570
4 26 39873 26 2.7091
5 28 3.7420 28 25758
6 30 3.5139 30 24459
7 32 3.3065 32 23273
§ 34 3.1166 34 22168
9 36 29403 36 2.1180
10 38 27777 38 20168
1 40 26283 40 19298
12 42 24894 42 1.8440
13 44 2.3621 44 1.7643
14 46 22427 46 1.6882
15 48 21315 48 16179
16 50 20281 50 1.5516

¥ =0.2945

No. T(°C) nx10%p* No. T(°C) nx10%p* No. T(°C) nxI10%n*
1 24365 2.5924 21 43665 1.6419 41 49.167  1.6689
2 25365 25176 22 44365 1.6246 42 49215 16856
3 26365 2.449] 23 44865 1.6126 43 49271 1.7113
4 27365 2.3809 24 45465 1.5997 44 49289  1.7220"
5 28365 23168 25 45992 1.5912 45 49306  1.7337*
6 29365 22545 26 46474 1.5835 46 49317  1.7412*
7 30365 2.1980 27 46965 1.5794 47 49324  1.7491°
g8  31.365 2.1423 28 47465 1.5777 48 49335  1.7580°
9 32365 2.0884 29 47765 1.5774 49  4934] 1.7640"
10 33.365 20389 30 47965 1.5797 50 49346  1.7715%
11 34365 19887 31 48.165 1.5798 51 4935 1.7765*
12 35365 19428 32 48365 1.5850 52 49353 1.7797*
13 36.365 1.8995 33 48.565 1.5937 53 49355  1.7837%
14 37365 1.8591 34 48715 1.6021 54 49358  1.7858%
15 38365 1.8187 35 48815 16110 55 4936 1.7865*
16 39365 1.7809 36 48914 1.6209 56 49.361 1.7926*
17 40365 1.7384 37 48965 1.6280
18 41.365 1.7110 38 49015 1.6343
19 42365 1.6811 39 49.065 1.6432
20 42984 1.6621 40  49.115 1.6535

" Influenced by shear.

840 15 1-6
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A8 N

:
A

Fig. 3. Temperature dependence of the viscosity n of a 2-C,E,/H;O mixture of
critical composition [y, =0.294S; T(visual})=49.365°C]. n~=1g-cm™'.s~!
(=1 P). Filled squares, viscosity data not influenced by singular contributions;
filled circles, viscosity data dominated by singular contributions; open circles,
viscosity data influenced by singular contributions and influenced by shear; open
squares, viscosity data in the transition region. Drawn-out curve: Eq. (7) with
A,=020961 x 107% B, =214011; C.=212434. Inset, drawn-out curve: Eq. (8)
with A7 =0.17532x 10~% B, =214.011; C =212434; T.=322.528 K; -, = 0.066.

data of set II). The two three-parameter fits give the following results:
setl, A,,.=015122x10"?% B, =278377; and C,,.=199.350; and
set1l, A, =0.19109%x107% B, . =222947; and C,, . =211.858. The
maximum relative deviation (4n,,10%/n,,) is smaller than Ix 10-2
(AN =Nsp.consir. = Msp.tits  Msp = Msp.consir.5 Msp.consur»  ViSCOsity data of a
mixture of critical composition constructed by spline approximation).

Figure 4 shows a plot of relative deviations (4n - 10%/n) of viscosity
data of a mixture of critical composition constructed by spline approx-
imation [Eq. (7) with A, =0.15122 x 1072, B,,.=278377, and
C.p.c = 199.35 for set 1] from experimental data obtained with a mixture of
critical composition away from the critical temperature (47 =1#ex, — 155
1 =1ey)- The insert in Figure 4 refers to data calculated with values of
A Bgp.r and C, . taken from set II. The experimental values are slightly
larger than those obtained by interpolation (parameter values of setl,
(dn x 10%/n) = 0.5; setIl, (4nx10*/n)~1). From these data it is con-
cluded that in the temperature range T <38.365°C, corresponding to
(T.— T)> 11 K, the critical contributions to the measured viscosity can be
neglected.
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Fig. 4. Determination of the temperature range in which the viscosity data of
a 2-C,E,/H,O mixture of critical composition are not influenced by critical
contributions. Plot of the relative deviations (4n x 10%/n) of viscosity data of a
mixture of critical composition constructed by spline approximation from
viscosity data of a mixture of critical composition measured at temperatures
away [rom the critical temperature (Table I, y.) as a function of temperature T
(=T,: see Fig. 1). Calculation of 5. Eq.(7) with 4, =0.15122x10"%
B, .=278371, and C,,.=199.350 (setl). Viscosity data not influenced by
critical contributions are indicated by filled circles. The inset shows a corre-
sponding plot for the data in set Il ie., calculation of 1, .: Eq.(7) with
A =0.19109 x 10-2 B,  =222.947, and C,, .= 211.858.

sp.¢

4.1.2. Determination of the Regular Part (See Section 2.1.2)

Analysis of the experimental viscosity data of a mixture of critical
composition also shows that at temperatures (T.— T)> 11K, critical
contributions are absent. Figure 5 shows a plot of the standard deviation
s of the fits of Eq. (7) to experimental data (see Table I, y.) as function of
the temperature T, (see Figs. 1 and 2).

In summary, it is found that the temperature dependence of the back-
ground viscosity 1, of a 2-C,E,/H, O mixture of critical composition can
be calculated using Eq. (7) with the following parameter values: A.=
(0.20961 +0.01400) x 1072, B_=214.011 +12.300, and C.=212.434 + 2.600
(see Fig. 3). In analyzing experimental data it is observed that the values of
the parameters in Eq. (7) are highly correlated. Therefore it is not surpris-
ing to find that the values of 5, calculated with the parameter values for
Agpcr By, and Cg, . given in the preceding paragraph agree with the
values of #, calculated with the values of 4., B., and C, using Eq. (7).
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Fig. 5. Determination of the temperature range in which the viscosity data
of a 2-C,E,/H,O mixtures are not influenced by critical contributions. Plot
of the standard deviation s of the fit of Eq. (7) to experimental viscosity data
of a mixture of critical composition (see TableIl, y.) as a function of
temperature T (= T,; see Fig. 1). The temperatures at which the viscosity
data are not influenced by critical contributions are marked by filled circles.

4.1.3. Determination of the Singular Part (See Section 2.2)

The viscosity data of a mixture of critical composition determined at
temperatures close to the critical are corrected for the influence of shear.
An influence of shear is expected when the product of the relaxation time
v of the dynamics of the local concentration fluctuations and the rate of
shear S is comparable with or larger than | (ie, tS>1). Approaching T,
the relaxation time t diverges strongly [t = (6ané?)/(kg T); “critical slowing
down”], whereas the rate of shear increases only slightly. As a conse-
quence, the rate of shear produces two effects when approaching T.: a
decrease in the shear viscosity and a change in the critical temperature
(enlargement of the one-fluid phase region of the phase diagram).
Following considerations of Oxtoby [23, 24], the change in viscosity with
shear of a mixture of critical composition is given by

n(S=0)=n(S)/[1—-4(2)] (11)
with

As=(n&’S)/(ksT)



84 Zielesny et al.

and
0.0214 + 0.0266 log A + 0.0078 (log 4)> for 0.1 <1 <20
[8/(457%)] In(4/0.45) for A>20

S is the rate of shear.

A(’ls)={

In a capillary viscometer the rate of shear changes during the
experiment and an effective shear S.q is used for the calculations:

Sen=(4/15)(pg{4h} r)/(nL) (12)

p is the density of the mixture; r, the radius of the capillary; L, the length
of the capillary; g, the acceleration due to gravity; and {4/}, the mean
value of the height of the fluid miniscus during an experiment.

The change in the critical temperature with the rate of shear is
considered by Onuki et al. [25-27] with the result given by Eq. (12):

T.(S)=T(S=0)[1+00832[(161£3S)/(kg T)1**’] (13)

T is the temperature at which the viscosity n is measured. [ Equation (13)
refers to a system with a lower critical point.]

The change in T. with S has an influence on the temperature
dependence of ¢, which in turn influences ig [see Eq. (11)]. In the follow-
ing, a correction of the experimental data on the basis of Eq. (11) is called
an Oxtoby correction. A correction on the basis of Eq. (13) in combination
with Eq. (11) is called an Oxtoby-Onuki correction.

After correcting the viscosity data measured close to the critical tem-
perature for the influence of the rate of shear (see Table III), the corrected
n(T.— T) data set is analyzed in the manner described in Section 2.2. The
results of the analysis are discussed on the basis of Figs. 4 and 5. In the
temperature range (7. — T)> 11 K, the influence of singular contributions
to the viscosity of a critical mixture can be neglected and the temperature
dependence of the viscosity can be represented by Eq. (6) with
A.=020961x10"2, B.=214.011, and C.=212.434 (see drawn-out line in
Fig. 3 and filled-square data points). Close to the critical temperature
[(T.— T)< 1.2K] the viscosity is dominated by singular contributions.
This temperature range is surprisingly small (see “plateau” regions in
Fig. 6). Figure 6 shows a plot of the standard deviation s of the fit of
Eq. (14) (three free parameters, A, z,, and T; fixed parameters,
B.=214011, C,=212.434, and v=10.630) to viscosity data corrected for
the change in the critical temperature caused by shear (see Table IV) as
function of T, (see Figs. 1 and 3):

(n/n*)=Acexp{B/[(T/T*)=CJ 1™ (14)
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Fig. 6. Analysis of the singular contributions to the viscosity of a 2-C,E,/H,O
mixture of critical composition: plot of the standard deviation s of the fit of
Eq. (14) with three free parameters, A, z,, and T, and fixed parameters
B.=214.011, C.=212.434, and v=0.630 to experimental viscosity data cor-
rected for the change of the critical temperature caused by shear (see Table IV,
Oxtoby—Onuki correction) as a function of T (=T;: see Fig. 1). The filled
circles indicate the temperature range in which the viscosity data are dominated
by critical contributions. The inset refers to a similar fit neglecting the data
influenced by shear.

The inset in Fig. 6 refers to a similar fit neglecting the data influenced by
shear.

The analysis of the data not influenced by shear gives the following
values of the free parameters: A.=(0.17532+0.00059)x10°2, and
z,=0.066+0.001, T.=(322.528 £+ 0.004) K [i.e., T.(fit)— T.(vis)=13 mK;
maximum relative deviation (45 -10?/5) <0.1; dn = Nexp — N> 1 =N -

The value of the critical exponent z, obtained in this way is close to
the theoretically predicted value (z,~0.065) and experimental values
reported in the literature [2—4]. T.(fit) and T.(vis) agree with each other
satisfactorily. A, and Q, are related by Eq. (9). With A_=0.20961 x 102,
£o=044nm, and z,=0066, a value of Q,=(1.52+0.60)x 10°cm "' is
obtained. Similar values of Q, for the same system have been reported
by Hamano et al. [28] (Qy=1.63x10°cm~') and Izumi et al. [29]
(Qo=1.7x10°cm ") using other methods of data analysis. They are of the
same order of magnitude as that reported for nitrogen (Q,=4.5x 10° cm !
[2]). However, they are an order of magnitude smaller than that reported
by Burstyn etal. [9] for the binary mixture nitroethane/3-methylpentane
(Qo=14.0x10°cm ~'), which has an upper critical point. The small value
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Table IV. Shear Viscosity ., of a 2-C,E,/H,O Mixture of Critical
Composition (v, =0.2945; T (vis)=49.365°c} Corrected for the Influence of
Shear (Oxtoby Correction, [, x 10%/5* ]5,: Oxtoby-Onuki
Correction, [#eo X 10%/n* Jon: See Text)”

Tt(ViS)— Tc ch
No. (K) (S—l) A A(’:) ["corx 102/,’4 ]0!

Oxtoby correction

4 0.076 393 0.0935 0.0023 1.7301
45 0.059 391 0.1504 0.0048 1.7421
46 0.048 389 0.2221 0.0073 1.7541
47 0.041 388 0.2992 0.0096 1.7661
48 0.030 387 0.5400 0.0148 1.7845
49 0.024 384 0.8232 0.0192 1.7985
50 0.019 383 1.2802 0.0243 1.8156
51 0.015 382 20012 0.0301 1.8317
52 0012 381 3.0509 0.0361 1.8464
53 0010 380 4.3064 0.0414 1.8606
54 0.007 380 8.4504 0.0528 1.8853
55 0.005 380 15.961 0.0647 1.9101
56 0.003 378 41913 0.0817 1.9520
T (vis)—T, Ser
No. (K) (s i 4(4) [eor X 1037 1o,

Oxtoby-Onuki correction

44 0.076 393 0.0791 0.0016 1.7247
45 0.059 391 0.1217 0.0036 1.7400
46 0.048 389 0.1718 0.0056 1.7511
47 0.041 388 0.2222 0.0074 1.7620
48 0.030 387 0.3038 0.0097 1.7752
49 0.024 384 0.4259 0.0126 1.7865
50 0.019 383 0.7078 0.0176 1.8032
51 0.015 382 0.9704 0.0211 1.8147
52 0.012 381 1.2774 0.0243 1.8241
53 0.010 380 1.5797 0.0270 1.8331
54 0.007 380 2.2801 0.0319 1.8447
55 0.005 380 3.0512 0.0361 1.8534
56 0.003 378 4.3065 0.0414 1.8701

“The uncorrected data are given in Table II using the same numbers. y* =1g-cm~'.s7!
(=1P). L, length of capillary, L =9.8 cm; r, radius of capillary, r =0.02286 cm; (4 ), mean
value of the height of the miniscus of the fluid, ¢4> =11.55cm.
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Fig. 7. Analysis of singular contributions to the viscosity of a 2-C,E,/H,O
mixture of critical composition at temperatures (7.—T)<1.2K: plot of
log(n/n'} as a function of log s (decadic logarithm) (log(n/n')= —vz,log
NW=A,.exp{B/UT/T*)-CJ}t=(T.—T)/T. T.=322.528K; A, =0.17532 x
1072, B.=214011: C.=212434). The drawn-out line has a slope of
(vz,)= —0.042. n’ is proportional to the background viscosity of a mixture of
critical composition in the temperature range in which the measured viscosity is
influenced by contributions of composition fluctuations with long-range correla-
tions. The data points indicated by filled squares are influenced by shear. The
data points indicated by filled circles are not influenced by shear. The data
points indicated by open circles belong to the transition region or represent
regular viscosity data. The two insets show the influence of the Oxtoby and the
Oxtoby-Onuki corrections, respectively (see text).

of Q, of the system 2-C,E,/H,O reflects the fact that the temperature
range in which the viscosity is dominated by singular contributions is
rather narrow ((T.—T)<1.2K).

In Fig. 7 a plot of log(n/n') versus log ¢ is shown, demonstrating the
influence of shear on the viscosity data at temperatures close to the critical
temperature (log(n/n') = —(vz,)logt; n' = A.exp{B./[(T/T*)-C.1}).
The uncorrected data points characterized by filled squares are influenced
by shear. The drawn-out line has a negative slope of (vz,) = 0.042 (theoreti-
cally expected value, vz, ~0.041). The two insets show the influence of the
Oxtoby and Oxtoby-Onuki corrections. The Oxtoby correction seems to
“overcorrect” the data. The Oxtoby-Onuki correction appears to bring the
viscosity data back to the theoretically expected curve.

A fit of Eq. (14) to the viscosity data of a mixture of critical composi-
tion obtained close to T. ((T.— T)<12K) including the data points
corrected by the Oxtoby-Onuki method with the three free parameters A4,
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T,, and z, and three fixed parameters (B.=214.011, C.=212.434, and
v=0.630) gives the following result: A.=(0.1764+0.0024)x 103
-, =0064 +£0.001, T .=(322.524 £0.001) K [ie., T.(fit)— T (vis)=9 mK;
maximum relative deviation (4n x 10%/n)=0.13 (49 =N, — s 1 ="1g)]-
This leads to a value of the parameter Q, of Q,=(1.56+0.60) x 10°cm ~ .
This value agrees with that calculated from the data neglecting the values
influenced by shear within the uncertainty of the measurements
[Qo=1(1.52+0.60)x 10%cm ~'].

The corresponding plot of log(n/y’) as a function of log  is shown in
Fig. 8. The negative slope of this curve has a value of (vz,)=0.040
(theoretically expected value, vz, = 0.041).

The complete data set of the temperature dependence of the viscosity
obtained with a 2-C,E,/water mixture of critical composition (with data
points influenced by shear and corrected by the Oxtoby-Onuki method) is
analyzed using Eq. (4). The background viscosity 1, is calculated from the
expression (n,/n*)=A.exp{B/(T/T*)—C.]} with 4.=0.20961 x 10 2,

A

log | 3 \
n

log 1

Fig. 8. Analysis of singular contributions to the viscosity of a 2-C,E,/H,O
mixture of critical composition at temperatures (T, — T)< 1.2 K. The viscosity
data close to the critical temperature are corrected for the influence of shear
(Oxtoby-Onuki correction; see text) and are included in the analysis (see
Table IV): plot of log(n/n’) as a function of logr (decadic logarithm)
tlogln/n')= —vz, log i w'=A;exp{B/UTIT ) -C 1} 1=(T.—-T)/T;
T.=322524K; 4.=0.17638x 10 "% B, =214011; C,=212.434). The drawn-
out line has a slope of (vz,)= —0.040. Filled squares, data points corrected for
shear; filled circles, data points in the critical region; open squares, data points
corrected for the influence of shear but excluded from the fitting procedure. The
inset shows the deviations.
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Fig. 9. Double-logarithmic plot of the correlation length ¢ as a function of the
reduced temperature difference ¢=(7T.— T)/T, of the system 2-C,E,/water of
critical composition. The drawn-out line represents the function =&y ™", with
£ =042 nm, T(fit)=322.339 K, and v(theory)=0.630. A plot of the deviation
of the data points from the function is given. Data points represented by open
squares are excluded from the fitting procedure.

B.=214011, and C.=212.434. For the calculation of values of function H,
three forms of H are used. They are given in Ref. 8:

(a) the complete H function [see Ref. 8, Eq. (2.18)];

(b) the asymptotic form of H for (q4/q.) — 0 [i.e., Qo =2/(exp{4/3})
qq: see Ref. 8, Eq. (2.25)]; and

(c) the asymptotic form of H for (gq4/9.)— 0 [ie,
Qo=2/(exp{4/3}) q.; see Ref. 8, Eqs. (2.23) and (2.24)].

Equation (4) is fitted to the entire data set [temperature range,
3mK < (7.~ T)<25K] with fixed values of the parameters 4., B, and
C. (see above), :,=0064, T.=322524K, and {,=0.44 nm. Using the
complete H function the ratio (g4/q.) is fixed at different values. The
parameter ¢ is the only free parameter. Using the two asymptotic forms of
H, only Q, is allowed to be an adjustable parameter. Figure 10 shows
corresponding results of the data analysis. It turns out that Eq. (4) with the
asymptotic form of A in the limit (g4/q.) = O represents best the viscosity
data set, with a maximum deviation of experimental data points from the
calculated curve of less than 0.5%. For the parameter Q, a value of

=1.52x 10%cm ~! is found. It is in very good agreement with the value
of Qy=1.56x10°cm ™' determined independently (see Section2). The
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Fig. 10. Fit of Eq. (4) to experimental viscosity data of the 2-C,E,/water
mixture of critical composition in the temperature range 3mK <
(T.—T)<25K. The two drawn-out lines represent the function 5=
nwexpic, H} (see Ref. 8) using two limiting forms of function H with Q, as
the only free parameter. The curve marked “x ™ refers to function H in the
limit (g4/g.) = oc; the curve marked “0" refers to function H in the limit
(q4/9.) — 0. The inset shows a plot of the standard deviation s of fits of
Eq. (4) to the experimental data for different fixed values of (g4/g.) with ¢,
as the only adjustable parameter.

limit (g4/g.) — O corresponds to the case in which the background diffusion
coefficient D, can be neglected.

4.2. Dynamic Light-Scattering Experiments

The results of the viscosity measurements discussed in Section 4.1
suggest that the measured value I” of the reciprocal of the time constant of
the autocorrelation function of light intensity scattered by a 2-C,E,/water
mixture of critical composition can be identified with the singular contribu-
tion I", of I [ie., (I'/qg®)= D= D_]. Therefore the data set of the dynamic
light-scattering experiments is analyzed in terms of the scaled diffusion
coefficient D* defined by Eq. (15):

*=(6mn)/(kyT) D (15)

The corresponding approximant of the scaling function proposed by
Burstyn et al. [9] has the form:

D* = RO (x)[ 1 + (x/2)2]? (16)
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with
Qu(x)=[3/(4x)][1 4+ x?+ (x* = 1/x) arctan(x)]
and

x=q¢

The information to calculate D* from Eq.(15) is available: (a) the
measured values of D (=I7/q”) as a function of temperature and (b) the
viscosity 5 of the critical mixture as a function of temperature, which
is calculated from Eq.(14) with A.=0.17532x10"2% B.=214011,
C.=212434, -, =0.066, and v =0.630. The values of ¢ are calculated from
the critical temperature of the sample used for the light-scattering
experiments.

A double-logarithmic plot of D* calculated from the experimental data
on the basis of Eq. (15) as function of the scaling variable x (= g&) reveals
that the D*(x) data collapse on a single curve as expected. For the calcula-
tion of &(T.—T) a value of &,=0.44 nm is used. But the data are not
represented by Eq. (16) with R =1.03. The manner in which the experimen-
tal data deviate from the theoretical curve suggests an uncertainty in &,.

o

(|E,

Fig. 11. Double-logarithmic plot of the reduced diffusion coeflicient D*
[see Eq.(15)] of a 2-C,E,/water mixture of critical composition as a
function of the scaling variable x =g¢. The values of ¢ are calculated with
£o=039nm and v=0.630. The drawn-out line represents Eq.(15) with
R =107 and =, =0.065.
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Fig. 12. Temperature dependence of the singular contribution D°® [double-
logarithmic plot; D® =lim(q = 0)(//¢*)]. The drawn-out line represents the func-
tion D°=Dyr*". with T,=322447K, v*=0.692, and Dy=568x 10 %cm?-s".
Data points represented by open squares are excluded from the fitting procedure.

Using R and ¢, as free parameters in a fit of Eq. (16) to the experimental
data, the best fit is obtained with R=1.07 and &,=0.39 nm (see Fig. 11),
From this finding it is concluded that we underestimated the uncertainty
in the value of ¢, of the system 2-butoxyethanol/water using static light-
scattering experiments. The quality of the fit is reduced slightly if

(a) &y is fixed at £;=0.42 nm (value of &, obtained from a new set
of static light-scattering data; see Section 3.3 and Fig. 9), leaving
R as the only free parameter of the fit [R(fit)=1.15], and

(b) Ris fixed at R=1.03, leaving &, as the only free parameter of the
fit [&,(fit)=0.37 nm].

In case a, the theoretically calculated D*(x) curve lies only very slightly
above the experimental data for x> 1. In case b, the opposite is true.

The temperature dependence of the singular contribution
D°[=lim(g=0)(I"./g*)] is shown in Fig. 12. The drawn-out line
represents the function D°= Dyr*", with T_=322447 K, v*=0.692, and
Dy=568x10"%cm?-s~' (three-parameter fit). With v* fixed at its
theoretical value (v*=0.671), the critical amplitude D, has a value
Dy=511x10"%cm?-s~', and the critical temperature T. a value of
T.=322429 K (two-parameter fit). The knowledge of D° is required in an
analysis of the kinetics of the liquid/liquid phase separation in studies of
spinodal decomposition.
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5. CONCLUSIONS
The following conclusions can be drawn from the results of this study.

(a) The crossover function for the critical viscosity of a classical fluid
developed by Bhattacharjee et al. [8] connecting the asymptotic behavior
near the critical point with the normal behavior away from the critical
point describes well the shear viscosity ddta of the binary liquid mixture
2-butoxyethanol/water of critical composition over a wide range of
temperatures [3mK <(7.— T)<25K) using the limiting form of the
crossover function for (g4/q.) — 0. This limit corresponds to the case in
which the background contribution D, to the mutual diffusion coefficient
can be neglected. Under this condition the critical amplitude of the viscosity
Q, is related to the parameter g4 by Q,=2/(exp{4/3}) q,,.

(b) A procedure is worked out to obtain the value of the critical
amplitude of the viscosity Q, from viscosity data by separating the
experimentally determined shear viscosity of a mixture of critical compo-
sition into its regular and singular part. This procedure is applied to
the viscosity data of the system 2-butoxyethanol/water. A value of
Qo= (1.54+0.60) x 10° cm ~' is found, which is small for a binary mixture
of components of small molar mass.

(c) Taking into account that the background contribution of the
mutual diffusion coefficient in the system 2-butoxyethanol/water can be
neglected with respect to the critical contribution, the reduced diffusion
coefficient D* is calculated from the experimental viscosity and dynamic
light-scattering data. The D*(x) data (x,scaling variable; x=g¢&) are
represented well by the approximation of the dynamic scaling function
proposed by Burstyn et al. [9] with R=1.07 and £, =0.39 nm. This value
of &, is smaller by 10% than the mean value of &, determined by static
light-scattering experiments [£;,=(0.43+0.1)nm].
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